Physics-based Creep Simulations of Thick Section Welds in High Temperature and Pressure Applications

Thomas M Lillo, Wen Jiang

September 2020

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Physics-based Creep Simulations of Thick Section Welds in High Temperature and Pressure Applications

Thomas M Lillo, Wen Jiang

September 2020

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Fossil Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

www.inl.go

Physics-based Creep Simulations of Thick Section Welds in High Temperature and Pressure Applications

Thomas M. Lillo, PI, and Wen Jiang, Co-PI Idaho National Laboratory P.O. Box 1625 Idaho Falls, ID 83415

Thomas.Lillo@JNL.gov

2020 HIGH PERFORMANCE MATERIALS PROJECT REVIEW MEETING

Date: September 1, 2020

DOE Award Number: FEAA90

Period of Performance: 07/2015-09/2020

Background/Project Justification

Creep strain is described by:

$$\varepsilon^{creep} = \varepsilon^{disloc} + \varepsilon^{diffusion}$$

Creep rate due to dislocation motion:

$$\dot{\varepsilon}^{disloc} = \begin{cases} \rho A f (1-f) \left(\sqrt{\frac{\pi}{4f}} - 1 \right) \sinh \left(C \frac{\sigma_{eff} - \sigma_B - \sigma_o}{MkT} b^2 \lambda \right), \text{ if } \sigma_{eff} - \sigma_B - \sigma_o > 0 \\ 0, \text{ othewise} \end{cases}$$

Primary creep

Secondary creep

Tertiary creep

Fracture

$$\frac{d\epsilon}{dt} = \text{minimum creep rate}$$

Description of dislocation creep is empirical!

Project Goals

Project Goals

- Replace empirical description of dislocation creep with physics-based description/ mechanism
- Incorporate weld/base metal microstructure into the simulation
- Include multi-axial stress states
- Predict long-term creep behavior

Simulations need to include

- Dislocation density-based crystal plasticity model w/ dislocation density evolution
- Orwan looping of γ' particles
- Diffusional creep mechanisms
 - Bulk diffusion
 - Grain boundary Diffusion
- Experimental microstructure of base metal and weld metal
 - EBSD characterization of grain characteristics and texture
 - Generation of synthetic microstructures with the same grain statistics using Dream3D
- Evolution of γ' distribution characteristics
 - Temperature-dependent volume fraction
 - Size evolution with time & temperature
- Use the Multi Object Oriented Simulation Environment (MOOSE)

Modeling and Simulation Approach – MOOSE Architecture

- MOOSE is a finite element, multiphysics framework that simplifies the development of advanced numerical applications.
- It provides a high-level interface to sophisticated nonlinear solvers and massively parallel computational capability.
- Open Source, available at http://mooseframework.org

Tensor Mechanics

- Linear elasticity
- Eigenstrains
- J2 Plasticity
- Crystal plasticity

Dislocation density-based Crystal plasticity model

Elastic and plastic deformation gradient

$$F = F^e F^p$$

dislocation slip along slip planes

Plastic velocity gradient in the intermediate configuration

$$\dot{m{F^p}}m{F^{p-1}} = \sum_{lpha=1}^{N_S} \dot{\gamma}^a_{glide}m{S^lpha}_{m{0}}^{m{lpha}} + \sum_{lpha=1}^{N_C} \dot{\gamma}^a_{climb}m{N^lpha}_{m{0}}^{m{lpha}}$$

$$S_0^lpha=m_0^lpha\otimes n_0^lpha$$

Glide direction

$$N_0^lpha=m_0^lpha\otimes m_0^lpha$$

Climb direction

s - Slip direction m - normal in reference configuration

Glide rate:

$$\dot{\gamma}_{glide}^a = (1 - \phi_p)\rho_M^\alpha b v_g^\alpha$$

- ϕ_p : precipitate volume fraction. The glide is limited to the matrix channels
- ho_M : mobile dislocation density

Climb rate:

$$\dot{\gamma}_{climb}^a = -\phi_p \rho_M^\alpha b v_c^\alpha$$

The mobile dislocation in contact with precipitates is: $\phi_p \rho_M^{\alpha}$

Climb velocity:

$$v_c^{\alpha} = -\frac{2\pi D}{b \log(r_{\infty}^{\alpha}/r_c)} \left(c_{eq}^{\alpha} - c_0\right)$$

Orowan Looping

Orowan looping Orowan looping occurs when the stress required for a dislocation to bow between precipitates is less than the stress required for the dislocation to penetrate precipitates

 γ ' particle bypass by dislocation looping (Alloy 617)

Stress above which looping will occur was determined by

$$au_{looping} = rac{Gb}{L_s}$$
 Spacing between precipitates $L_s = \sqrt{rac{8}{3\pi\phi_p}}r_p - r_p$

The athermal resistance is increased by the Orowan looping:

$$s_a^{\alpha} = \sqrt{\tau_{disloc-disloc}^{\alpha} + \tau_{looping}^{2}}$$

 L_s = spacing between precipitates f_p = volume fraction of precipitates r_p = radius of precipitates

Synthetic Microstructures

- 3D volume needed for simulations
- EBSD on three orthogonal surfaces
- Reconstructed in Dream 3D
 - Morphology
 - Orientation statistics

<u>Issues</u>

- Scale of weld requires multiple, large data files for base and weld metal
- Dream 3D cannot stitch the two microstructures together
 - Voxel approach
 - Serial EBSD

EBSD Data

Reconstructed

y' Aging in the Weld

Concerns:

- γ' growth during creep
- Weld metal (compositional effects?)

Goal:

• Determine growth constant for γ ' as a function of temperature, k(T), for modeling effort:

$$r^3 - r_o^3 = k(T)t$$

Experimental:

- Temperatures: 700, 750, 800°C
- Aging times up to 10,000 hrs
- TEM with image analysis

Results:

- γ' growth behavior at 750°C follows that of Alloy 617
- More statistical variation of γ' size in weld

γ' fraction variation in weld (Aged - 750°C, 400 hrs)

Current Model Calibration Results

Tertiary Creep Transition Issue

- Primary and secondary creep are simulated quite well
- Transition to tertiary creep is inconsistent
- Physical processing occurring during transition are not known with confidence – can't develop the physics-based model for tertiary creep transition
- Model uses a damage model for transition to tertiary creep following Shen, 2015 – Wrong damage model?
- Use physics-based model to predict minimum creep rate and Grant-Monkman plot to predict rupture time

Temperature, °C	Stress, MPa	Actual Rupture Time, Hrs	Grant- Monkman Rupture Time, Hrs
700	413	643	610
750	305	1261	2000
800	200	400	390

Current status

- Experimental data collection and analysis is complete
- Currently determining model calibration parameters for base metal and for weld metal, separately

Weld-Metal-Only
Specimens

Weld in base plate

Will run simulations on uniaxial creep specimen – base metal + weld metal

Weld with 1/4" tensile specimen

SIDE VIEW

Cross-weld creep Specimens

Final report

Questions

Contact Information

- Thomas Lillo:
 - Thomas.Lillo@inl.gov
 - **-** (208)526**-**9746
- Wen Jiang:
 - Wen.Jiang@inl.gov
 - **-** (208)526-1586